Aller au menu
Aller au pied de page
Retour vers Logarithmie

Cryptarithmes

Solution

Il y a 72 solutions :

0123456789
SIUTOLEV
341 + 521 + 8558 = 9420
0123456789
SITOLUEV
341 + 561 + 8558 = 9460
0123456789
SITOLUEV
341 + 571 + 8558 = 9470
0123456789
SIULOTEV
651 + 421 + 8448 = 9520
0123456789
SIULOTEV
651 + 431 + 8448 = 9530
0123456789
SILOTUEV
651 + 471 + 8448 = 9570
0123456789
SUITOLEV
342 + 512 + 6556 = 7410
0123456789
SITOLEVU
342 + 582 + 6556 = 7480
0123456789
SITOLEVU
342 + 592 + 6556 = 7490
0123456789
USITOLEV
342 + 502 + 7557 = 8401
0123456789
SITOLUEV
342 + 562 + 7557 = 8461
0123456789
SITOLEVU
342 + 592 + 7557 = 8491
0123456789
USILOTEV
652 + 402 + 7447 = 8501
0123456789
SIULOTEV
652 + 432 + 7447 = 8531
0123456789
SILOTEVU
652 + 492 + 7447 = 8591
0123456789
USILOEVT
962 + 302 + 7337 = 8601
0123456789
SILUOEVT
962 + 342 + 7337 = 8641
0123456789
SILUOEVT
962 + 352 + 7337 = 8651
0123456789
OTSIUEVL
103 + 943 + 6996 = 8042
0123456789
OTSIUEVL
103 + 953 + 6996 = 8052
0123456789
OTSIEUVL
103 + 973 + 6996 = 8072
0123456789
UEOVITLS
524 + 804 + 1881 = 3209
0123456789
EOVITULS
524 + 864 + 1881 = 3269
0123456789
EOVITULS
524 + 874 + 1881 = 3279
0123456789
OTUSIEVL
104 + 924 + 5995 = 7023
0123456789
OTSIEUVL
104 + 964 + 5995 = 7063
0123456789
OTSIEVUL
104 + 984 + 5995 = 7083
0123456789
ULISOEVT
964 + 304 + 7337 = 8605
0123456789
ULISOEVT
964 + 314 + 7337 = 8615
0123456789
ULISOEVT
964 + 324 + 7337 = 8625
0123456789
UTOLIEVS
346 + 506 + 7557 = 8409
0123456789
UTOLIEVS
346 + 516 + 7557 = 8419
0123456789
UTOLIEVS
346 + 526 + 7557 = 8429
0123456789
SUTOLIEV
236 + 516 + 8558 = 9310
0123456789
STOULIEV
236 + 546 + 8558 = 9340
0123456789
STOLIUEV
236 + 576 + 8558 = 9370
0123456789
UEVLSOIT
967 + 307 + 1331 = 2605
0123456789
EVLUSOIT
967 + 347 + 1331 = 2645
0123456789
EVLSOIUT
967 + 387 + 1331 = 2685
0123456789
OTEUVSIL
107 + 937 + 2992 = 4036
0123456789
OTEVUSIL
107 + 957 + 2992 = 4056
0123456789
OTEVSIUL
107 + 987 + 2992 = 4086
0123456789
OTUEVISL
107 + 927 + 4994 = 6028
0123456789
OTUEVISL
107 + 937 + 4994 = 6038
0123456789
OTEUVISL
107 + 957 + 4994 = 6058
0123456789
ULEVOIST
967 + 307 + 4334 = 5608
0123456789
ULEVOIST
967 + 317 + 4334 = 5618
0123456789
ULEVOIST
967 + 327 + 4334 = 5628
0123456789
UEVTOLSI
348 + 508 + 1551 = 2407
0123456789
EVTOLUSI
348 + 568 + 1551 = 2467
0123456789
EVTOLSIU
348 + 598 + 1551 = 2497
0123456789
UEVLOTSI
658 + 408 + 1441 = 2507
0123456789
EVULOTSI
658 + 438 + 1441 = 2537
0123456789
EVLOTSIU
658 + 498 + 1441 = 2597
0123456789
UEVLOSIT
968 + 308 + 1331 = 2607
0123456789
EVLUOSIT
968 + 348 + 1331 = 2647
0123456789
EVLUOSIT
968 + 358 + 1331 = 2657
0123456789
USOELVIT
928 + 608 + 5665 = 7201
0123456789
SOUELVIT
928 + 638 + 5665 = 7231
0123456789
SOUELVIT
928 + 648 + 5665 = 7241
0123456789
SOEUVTLI
619 + 739 + 2772 = 4130
0123456789
SOEVUTLI
619 + 759 + 2772 = 4150
0123456789
SOEVTLUI
619 + 789 + 2772 = 4180
0123456789
OUSTEVLI
309 + 819 + 4884 = 6012
0123456789
OSTEUVLI
309 + 859 + 4884 = 6052
0123456789
OSTEVULI
309 + 879 + 4884 = 6072
0123456789
UTOSLEVI
239 + 509 + 6556 = 7304
0123456789
UTOSLEVI
239 + 519 + 6556 = 7314
0123456789
TOSLEVUI
239 + 589 + 6556 = 7384
0123456789
ULSOEVTI
859 + 309 + 6336 = 7504
0123456789
ULSOEVTI
859 + 319 + 6336 = 7514
0123456789
ULSOEVTI
859 + 329 + 6336 = 7524

Entrez un cryptarithme


S'il y a des chiffres dans le cryptarithme :

Qu'est-ce qu'un cryptarithme ?

Un cryptarithme (en anglais : cryptarithm, cryptarithmic, cryptarithmetic, alphametic, etc.) est une opération arithmétique dans laquelle chaque chiffre a été remplacé par une lettre. Il y a une correspondance bi-univoque entre lettres et chiffres : une même lettre représente toujours le même chiffre, deux lettres différentes représentent deux chiffres différents. Le but du jeu est, à partir de l'opération en lettres, de trouver une correspondance entre lettres et chiffres qui donne un résultat exact.

En général un cryptarithme se présente sous la forme d'une égalité, par exemple : ABC + ACD = CEE (dont une des solutions est : A→3, B→4, C→7, D→5, E→2, qui donne 347 + 375 = 722). Cependant, sur la présente page ce peut être une expression beaucoup plus générale.

Pour certains amateurs, un cryptarithme doit obligatoirement possèder une solution unique (une seule substitution des lettres par des chiffres donne une opération exacte). Les exemples de cette page ne respectent pas tous cette règle, lorsque c'est le cas ils sont marqués du symbole ¤.

Comment résoudre un cryptarithme ?

Prenons un exemple très simple :

         AB
      +  BA
      = CBC

Dans la colonne du milieu, on voit qu'en ajoutant A et B on obtient B. A ne peut pas valoir 0 car il est en tête du premier nombre (et d'ailleurs si A valait 0, dans la colonne de droite la somme B + 0 vaudrait B et non C). La seule possibilité est donc A→9 et il doit y avoir une retenue venant de la colonne de droite : B + 9 + 1(retenue) = B + 10 donne bien B, avec une retenue de 1. Le C de la colonne de gauche vient de cette retenue, donc C→1. En revenant à la colonne de droite, on voit que 9 + B = 11 (soit C, qui vaut 1, et une retenue de 1), donc B→2. Le cryptarithme est résolu : A→9, B→2, C→1 et l'opération 92 + 29 = 121 est exacte.

La résolution est habituellement beaucoup plus compliquée, tout en relevant du même principe général. On est souvent obligé de faire des hypothèses sur certaines valeurs, d'en tirer toutes les conséquences, puis de revenir en arrière si on aboutit à une contradiction.

Une méthode bien plus simple consiste à écrire le cryptarithme dans la case en haut de cette page, cliquer sur « Résoudre » et attendre quelques secondes que la ou les solutions s'affichent.

Quelques exemples

Les cryptarithmes les plus intéressants sont ceux dont les mots ont un rapport entre eux, voire forment une phrase. Le plus connu de ce genre est censé être une lettre envoyée par un étudiant désargenté à ses parents : SEND + MORE = MONEY ¤ (send more money signifie « envoyez plus d'argent » en anglais). Ci-dessous d'autres exemples qui ont été trouvés par des amis ou par moi-même. En cliquant sur un cryptarithme il sera automatiquement copié dans la case en haut de cette page et vous verrez sa solution. Le symbole ¤ signifie que la solution est unique. Le nom indiqué entre parenthèses est celui de la personne qui me l'a signalé, qui n'est pas forcément l'auteur. Si vous en trouvez d'autres qui vous semblent dignes d'intérêt, notamment s'ils ne sont pas de simples additions, envoyez-les moi.

Cryptarithmes arithmétiques

Un cas particulier très prisé des amateurs est celui des opérations écrites en toutes lettres, qui sont exactes aussi bien quand on les lit en français que quand on les interprète comme des cryptarithmes. Par exemple NEUF + UN + UN = ONZE est vrai, et le reste si on effectue les substitutions E→9, F→7, N→1, O→2, U→8, Z→4 pour obtenir 1987 + 81 + 81 = 2149. En voici d'autres exemples :

Quel est le plus long cryptarithme ?

Le 29 novembre 2005, Éric Angelini annonça qu'il avait découvert (avec l'aide de Don Reble) un cryptarithme à solution unique comportant plus de neuf septillions de termes ! Ce record est présenté et expliqué en détail sur le site d'Éric.

La question se posa alors de savoir s'il existait des cryptarithmes de longueur aussi grande que l'on veut. En s'appuyant sur le résultat précédent et sur la nomenclature de Conway et Wechsler qui permet de donner un nom à tous les nombres entiers sans aucune limite, Patrick Coilland a répondu positivement le 4 décembre 2005. Son cryptarithme extensible à l'infini se présente ainsi :

UN_TRILLINILLINILLI...NILLITRILLION + HUIT + ZERO + ZERO + ... + ZERO = UN_TRILLINILLINILLI...NILLITRILLION_HUIT
(Le caractère « souligné » relie les mots qui sont normalement séparés dans l'écriture des nombres mais doivent être accolés pour le cryptarithme.)

L'élément NILLI apparaît p fois dans chacun des grands nombres, et le mot ZERO apparaît 573065554043040430...40430881555640 fois (la suite 40430 figure p fois dans ce nombre). Pour chaque valeur de p on obtient un cryptarithme différent, dont la solution unique est :

0123456789
NZIHOELTRU

Trois jours plus tard, Patrick Coilland améliorait encore cette performance avec un cryptarithme extensible à l'infini n'utilisant pas le ZERO. Ce cryptarithme « parfait » (forme « classique » avec une somme à gauche et un seul terme à droite, solution unique, pas de ZERO et nombre de termes non limité) se présente ainsi :

UN + UN + ... + UN + SIX + SIX + ... + SIX + SIX_TRILLINILLINILLI...NILLIMILLIONS = SIX_TRILLINILLINILLI...NILLIMILLIONS_SIX_TRILLINILLINILLI...NILLIMILLIONS

où les nombres de UN, de SIX et de NILLI doivent respecter des relations précises qui sont explicitées au bas de la page déjà citée d'Éric Angelini.

D'autres sites

Il existe de très nombreux sites Web en anglais consacrés aux cryptarithmes, avec ou sans possibilité de les résoudre « en ligne ». Vous pouvez commencer par exemple par celui de Naoyuki Tamura puis suivre ses liens.

Robert B. Israel propose une applet pour résoudre les cryptarithmes (qu'il appelle « alphametic ») faisant intervenir les quatre opérations et les puissances.

Pour composer vos propres cryptarithmes avec les mots qui vous intéressent, voyez le site de Truman Collins. Il comprend un générateur de problèmes très puissant ainsi qu'une vaste collection de cryptarithmes, y compris certains trouvés dans la Bible ou les œuvres de Shakespeare.


Nicolas Graner, 2004 & 2013, Licence Art Libre